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ABSTRACT
In this paper, we propose a multimodal approach to create
the mapping between gesture and sound in interactive mu-
sic systems. Specifically, we propose to use a multimodal
HMM to conjointly model the gesture and sound parame-
ters. Our approach is compatible with a learning method
that allows users to define the gesture–sound relationships
interactively. We describe an implementation of this method
for the control of physical modeling sound synthesis. Our
model is promising to capture expressive gesture variations
while guaranteeing a consistent relationship between gesture
and sound.

Categories and Subject Descriptors
H.5.5 [Information Interfaces And Presentation]:
Sound and Music Computing; J.5 [Arts and Humanities]:
Music

Keywords
music, gesture, sound synthesis, music performance, HMM,
multimodal

1. INTRODUCTION
Gestural interaction with audio and/or visual media has

become ubiquitous. The development of gestural systems
for sound control concerns not only musical applications,
but also novel gaming applications [10], sonic interaction
design to facilitate objects manipulation [11] or rehabilita-
tion where interactive sound feedback could inform users on
their movement performance.

In this paper, we focus on gesture–based control of sound
synthesis targeting applications to music performance and
movement sonification for rehabilitation. Specifically, we
address current issues in designing the relationship (often
called mapping) between gesture features and sound control
parameters in such interactive systems (cf. figure 1).
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Figure 1: Overview of an interactive musical system. The
mapping defines the coupling between actions and sound
processing.

Our research follows recent approaches based on machine
learning which aim at defining the mapping between gesture
and sound from examples rather than by an analytical for-
mulation. In this paper, we support a multimodal perspec-
tive on mapping by introducing a probabilistic model of the
gesture–sound relationships. The system is based on a sin-
gle multimodal Hidden Markov Model (HMM) representing
both gesture and sound parameter morphologies. The model
is trained by one or multiple gesture performances associ-
ated to sound templates. It captures the temporal structure
of gesture and sound as well as the variations which occur
between multiple performances.

Section 2 gives a short overview of existing research and
issues related to gesture–sound mapping in musical instru-
ments. Related works in other fields of multimedia are de-
scribed in section 3. The multimodal HMM is described in
section 4, with specific implementation details. Finally, sec-
tion 5 presents an application of the model to gesture–based
control of physical modeling sound synthesis.

2. GESTURE-SOUND RELATIONSHIPS IN
DIGITAL MUSICAL INSTRUMENTS

Creating relationships between gesture and sound param-
eters has been recognized one of the crucial aspects of the
design of digital musical instruments. Specific choices in
this design influence the interaction possibilities, varying in
terms of ease–of–use, expressivity, and learning possibilities.
Most approaches require an analytical definition of the re-
lationships between gesture and sound, for example using
explicit parameter wiring or implicit models, e.g. dynamic
systems.
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Recent works support interaction–driven approaches that
take advantage of machine learning to define the mapping by
demonstration; i.e. from training examples provided inter-
actively by the user. Notably, number of strategies exploit
gesture recognition methods to link the identification of user-
specific gestures to sound control [7, 5]. Fiebrink [4] recently
proposed a play-along paradigm enabling users to edit the
training examples by performing gestures while listening to
sound examples.

We propose a similar approach, based on machine learn-
ing, allowing users to define the mapping by direct demon-
stration of their intended control strategy: the mapping is
learned from examples of the relationships between gesture
and sound. This implies several requirements. First, for the
method to remain practical, the model should be trained
with a limited number of examples. Second, gesture and
sound parameters, as well as their relationship, evolve over
time. A computational model must take into account these
temporal variations. Finally, the model should be able to
characterize the expressive variations between multiple per-
formances of the same gesture.

Previous works already partially addressed these issues.
Systems based on regression methods such as neural net-
works [4, 5], for example, generalize from multiple interpre-
tations but are often limited to static relationships. Gesture
recognition methods often model the temporal dynamics of
gestures but are usually limited to classification, restrict-
ing mapping strategies to discrete interactions such as trig-
gering [7, 5]. The temporal mapping method we recently
proposed can learn the temporal relationship between a ges-
ture and a sound using continuous gesture recognition and
alignment [1]. Nevertheless, the method is limited to mod-
eling the gesture only. Moreover, the model does not allow
for characterizing expressive inter–performance variations.
Our goal is to address such limitations by adopting a mul-
timodal perspective on gesture–sound mapping through the
introduction of a fully probabilistic multimodal model.

3. RELATED WORKS IN OTHER FIELDS
OF MULTIMEDIA

Many recent systems for virtual character animation use
speech–driven approaches, involving mapping from acoustic
features to lip, face or body motion [2, 13, 3]. Similar issues
are found in speaker conversion [14] or acoustic–articulatory
inversion [8, 14], aiming at the retrieval of speech–producing
movements from acoustic signals. Most of the current ap-
proaches are based on sequence models representing the out-
put process in conjunction with the input modality. In
particular, various extensions of HMMs were proved effi-
cient for feature mapping, such as HMM remapping [2], the
input-output HMM [6] and the multimodal HMM (some-
times called audio-visual HMM or HMM inversion) [8, 13,
3].

In spite of their similarity, our applications in gestural
sound control contrast in critical points the applications we
just mentioned. While the movements and sounds related
to speech are generated by the same action and thus intrin-
sically related, the gesture–sound relationship can be arbi-
trarily defined by the user. Hereby, the choice might depend
on the application, which limits the practicality of creating
extensive databases. In many cases, the training examples
should be provided by the user within a single workflow in-

tegrating training and performance. These aspects require
adapting models and algorithms to an interactive learning
paradigm, as argued by Fiebrink [5].

4. GESTURE–SOUND MAPPING WITH
MULTIMODAL HMM

This section details the multimodal HMM and the speci-
ficities of our implementation, designed to fit the context
of real-time music performance. In the remainder of this
article, gesture features or gesture observations refer to the
parameters extracted from a gesture capture system. Simi-
larly, sound features or sound observations refer to the vector
of control parameters of a sound synthesis model.

4.1 Multimodal HMM
The multimodal HMM is an extension of traditional HMM

for handling multimodal data, allowing for the prediction of
missing features. We assume that gesture and sound are
generated by the same underlying Markov process by rep-
resenting jointly their observation sequences. The Dynamic
Bayesian Network representation of the model is presented
in figure 2, where qt is the hidden states at time t, og

t (resp.
os
t ) is the gesture (resp. sound) observation vector.

qt-1 qt qt+1

ogt-1 ogt ogt+1ost-1 ost ost+1

Figure 2: Graphical model of the Multimodal HMM.

Joint features

Motion features

Sound features

Training
HMM with joint 

observation 
probability 
distribution

Training

HMM with 
conditional 
observation 
probability 
distribution

Motion features

Sound features

Prediction

Performance

Figure 3: Gesture–sound mapping with the multimodal
HMM.

For training, gesture and sound feature vectors are con-
catenated to form a multimodal sequence (cf. figure 3, left).
The observation probability distribution at time t of a state
j of the HMM with model parameters λ is defined as a joint
multimodal Gaussian distribution:

P (og
t ,o

s
t |qt = j, λ) = N ([og

t ,o
s
t ] ;µj ,Σj)

where the mean of the distribution µj is the concatenation
of the mean vectors for each modality, and Σj is a covari-
ance matrix which can be decomposed in four sub-matrices
representing unimodal and cross-modal covariances between
gesture and sound parameters:

µj =
[
µg
j , µ

s
j

]
Σj =

[
Σgg

j Σgs
j

Σsg
j Σss

j

]
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The HMM is trained using an Expectation-Maximization
algorithm on the multimodal observations sequences [9].

For prediction, the joint observation distributions are con-
verted to conditional distributions by marginalizing over the
gesture observations at time t:

p(os
t |og

t , qt = j, λ) = N
(
os
t ; µ̂s

j(og
t ), Σ̂ss

j

)
where the mean µ̂s

j(og
t ) and covariance Σ̂ss

j of the sound are
re-estimated by combining the learned mean of the sound
with a linear regression over the gesture features:

µ̂s
j(og

t ) = µs
j + Σsg

j

(
Σgg

j

)−1 (
og
t − µ

g
j

)
Σ̂ss

j = Σss
j −Σsg

j

(
Σgg

j

)−1
Σgs

j

Given a new gesture, the associated sequence of sound fea-
tures is estimated by a real-time prediction algorithm pre-
sented in section 4.2.2 (figure 3, right).

4.2 Interactive learning and implementation
specificities

4.2.1 Interactive learning workflow
An interactive learning situation places the user in con-

stant interaction with the system. The workflow of a typical
setup is an interaction loop divided in two steps:

1. Training : The user can edit the training set by demon-
strating examples of gesture and sound segments (i.e.
time profiles of parameters). The user can then adjust
the parameters and train the model.

2. Performance: The user evaluates the results by inter-
acting with the trained model, which synthesizes sonic
feedback to his gestures in real-time.

This interaction paradigm enables the user to iteratively
evaluate and adjust the model until it converges to his pur-
poses. In this paper, we only consider ”direct” evaluation of
the results, i.e. user evaluation on subjective criteria during
performance, as defined by Fiebrink [5].

4.2.2 Performance: real-time prediction of sound
control parameters

Reactivity and low latency are strong requirements of a
gesture–based music performance system: sound control pa-
rameters must be synthesized in real-time to provide instan-
taneous feedback to the user’s gestures. This constraint
prevents the use of either Viterbi estimation of the state
sequence or an iterative estimation of the sound sequence
based on the EM algorithm [13, 3]. Our implementation
features a real-time prediction algorithm based on a causal
estimation of state probabilities. At each incoming gesture
observation og

t , the sound feature vector os
t is estimated by

maximum likelihood based on the state probabilities com-
puted by a forward algorithm:

os
t =

N∑
i=1

αt(i) · argmax
os
t

[p(os
t |og

t , qt = i)]

where αt(i) = P (og
1:t, qt = i|λ) is the probability of the par-

tial gesture observation sequence og
1:t and state i at time

t [9]. This causal estimation ensures a good reactivity of
the system while guaranteeing the smoothness of the esti-
mated sound feature sequence. Typically, 10ms latency is

often considered sufficient to guarantee the consistency of
the relationships between gesture and sound [12]. In our
experiments with inertial sensors (see section 5), we reach a
latency of approximately 5ms.

5. APPLICATION: GESTURE CONTROL
OF PHYSICAL MODELING SOUND
SYNTHESIS

5.1 Motivation
Physical modeling sound synthesis aims at simulating the

acoustic behavior of physical objects. The gestural control
of such sound physical models remains difficult since the
captured gestural parameters are generally different from
the physical input parameters of the sound synthesis algo-
rithm. For example, sensing gestures using accelerometers
might pose difficulties for controlling the physical model of
a bowed string where force, velocity, and pressure are the
expected input.

Our approach of defining gesture-sound relationship by an
intermediate probabilistic model seems appropriate to tackle
such an issue. We therefore propose a system for gesture–
based control of physical models which relies on our interac-
tive learning system. It allows users to craft gestural control
strategies by demonstrating gestures associated with partic-
ular sounds designed with virtual physical instruments. Our
goal is to provide a solution for quick prototyping and eval-
uation these control strategies using the multimodal HMM.

5.2 Application description

5.2.1 Modal synthesis
We use Modalys, a software dedicated to modal synthesis,

i.e. that simulates the acoustic response of vibrating struc-
tures under an external excitation. Virtual instruments are
built by combining modal elements – e.g. plates, strings,
membranes – with various types of connections and excita-
tors – e.g. bows, hammers, etc. Each model is governed
by a set of physical parameters – e.g. speed, position and
pressure of a bow. Specific sounds and playing modes can
be created by designing time profiles combining these pa-
rameters.

5.2.2 Application Workflow
The workflow of the application fits in the interactive

learning workflow described in section 4.2.1, and can be di-
vided in a training phase and a performance phase, as illus-
trated in figure 4.

In the training phase, the user can draw time profiles of
control parameters of the physical models to design particu-
lar sounds. Each of these segments can be visualized, mod-
ified, and played using a graphical editor. Then, the user
can perform one or several demonstrations of the gesture he
intents to associate with the sound example (figure 4a). In
our experiments, gestures were captured using inertial sen-
sors (3D accelerometers), and various synthesis models were
used, such as a modified bowed string or a clarinet. Gesture
and sound are recorded to a multimodal data container for
storage, visualization and editing. Optionally, segments can
be manually altered using the user interface.

During the performance phase, the user can gesturally
control the sound synthesis. The system allows the explo-
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(a) Training: sounds are designed using a graphical editor, and
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(b) Performance: the model is used to predict the sound parame-
ters associated with a live gesture.

Figure 4: Application workflow.

ration of all the parameter variations that are defined by the
training examples. Sound parameters are predicted in real-
time to provide the user with instantaneous audio feedback
(figure 4b). If needed, the user can switch back to training
and adjust the training set or model parameters.

6. DISCUSSION AND CONCLUSION
A preliminary evaluation of the system, based on both

qualitative observations and computational evaluation on
synthetic signals, has been performed and shows promis-
ing results. In comparison with the template–based model
introduced in [1], the multimodal HMM tolerates larger vari-
ation occurring between the performance and the training
data. Precisely, an evaluation of the algorithm on synthetic
data indicates a better ability of the multimodal HMM to
capture gesture variations in relationship with sound vari-
ations. This is related to the fact that the gesture–sound
relationships are encoded globally by the transition struc-
ture of the HMM, and locally by the covariance matrices at
each state. The model seems therefore able to capture both
the temporal dynamics of the mapping and its expressive
variations on between several interpretations.

We plan to perform more detailed evaluations of the
model. First, the model will be evaluated on a database of
sound-related gestures in order to assess its ability to capture
expressive variations between gesture performances, and to
evaluate the benefits of the temporal modeling in compari-
son with static regression methods. Second, the model will
be evaluated in the context of movement sonification for
rehabilitation. The model will be used to generate informa-
tive audio feedback to physical gestures in order to enhance
motor learning, for example by continuously sonifying the
range of variations between the gesture of a patient with
motor disabilities and a target movement.
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